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Abstract

The performance of object-oriented applications often suffers from the in-
efficient use of high-level abstractions provided by underlying libraries. Since
these library abstractions are user-defined and not part of the programming
language itself only limited information on their high-level semantics can be
leveraged through program analysis by the compiler and thus most often no
appropriate high-level optimizations are performed.

In this paper we outline an approach based on source-to-source transfor-
mation to allow users to define optimizations which are not performed by the
compiler they use. These techniques are intended to be as easy and intuitive
as possible for potential users; i.e., for designers of object-oriented libraries,
people most often only with basic compiler expertise.

Introduction

In the engineering of language based software, there are two extreme approaches.
One is to just use a regular programming language, the other is to use a very
high-level formalism, such as attribute grammars. The technique we present was
designed to fill a place in between these extremes, and to attempt to bridge the gap.

The user can be expected to have reasonable knowledge of the language in
which the program is written which he desires to optimize. Allowing him to express
the optimization in this language eliminates the barrier that needs to be overcome
when learning a new language with different syntax and semantics. But at the same
time, what he is required to express should only focus on the aspects of the program
transformation necessary to perform the optimization but not significantly more.
Any non-trivial program transformation requires knowledge about the structure of
a program. Therefore we use as computation model structural induction which is
a special case of attributed grammars and requires only one pass over the program
fragment that is to be transformed. New information about the program is com-
puted by an attribute evaluation mechanism. New program fragments, those that
are added or replace existing program fragments, can be expressed as source-strings.
This is accomplished by reinvoking the front-end for program fragments to be added
and for which an intermediate representation is created during a structural induc-
tion on the input program. Once the program has been transformed into a more
efficient program it can be unparsed (as source code) and compiled with the vendor
compiler.

In our case, the language for which our framework, ROSE [1], allows to express
optimizations is C++. Hence, we allow to express the optimizations in the same
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language, in C++. The user needs to be aware of a structural representation of
source code constructs, i.e. an abstract syntax tree (AST), and in which order
this representation is traversed. By traversing the AST any source-strings can be
computed by evaluating attributes. To make the modification of the AST convenient
for the user, our framework automatically extends such a source-string with all
necessary declarations and runs it as completed program through the front-end and
extracts the AST fragment. This AST fragement is then inserted at the specified
AST location and all internal data structures are updated. Additionally the user
can unparse the AST at any given AST node and obtain a string representing the
subtree with this node as root node.

The AST is annotated with all static type information, scoping information, and
symbol table information. This information is also available for any program frag-
ment that is inserted into the AST. No action is required within a transformation
to update dependencies in the AST when replacing, adding, or deleting program
fragments. All semantic information is always updated by the underlying system.
The order in which the AST is traversed is defined by its structure but semantic
information about the program can be used when deciding if and where a trans-
formation is to be applied. This is particuarly useful when transforming programs
with user-defined types.

To have semantic information available is essential for high-level optimizations.
We have shown in [1, 2] that the performance penalty of high-level abstractions can
be overcome by source-to-source transformations and presented promising results for
user-defined abstractions as they are used in practice. We are able to get a similar
performance for C++ code with high-level abstractions as for low-level C code,
and by using the restrict keyword we can also match the performance of Fortran
programs. This results encouraged us to build a source-to-source architecture that
allows to automate many optimizations that otherwise would have to be done by
hand to achieve the desired level of performance with today’s commercial compilers.

In the remaing sections we describe the architecture we developed in detail and
how the definition of program transformations is simplified by the capabilities of
the discussed architecture. We also give an overview of the infrastructure available
for debugging transformations and visualization of the intermediate representation.
Eventually we discuss performance aspects of the implementation.

Source-To-Source Architecture

In our source-to-source architecture the input language and output language is the
same. Therefore an output of the back-end can always be an input to the front-
end. Similar for code fragments, the architecture allows to obtain the corresponding
intermediate representation fragment (IR-fragment) for a given source-fragment by
reinvoking the front-end. Any IR-fragment can be unparsed to a source-fragment
by (re)invoking the back-end. We call this “bending” the front-end and back-end.
Both operations can be performed when processing the indermediate representation
and evaluating attributes. Hence, IR-fragments as well as source-fragments, can be
computed as attributes and used to describe which code is to be inserted and/or
replaced in the IR. This interplay allows to use either representation when defining
a transformation.

We did not modify the front-end to allow to parse source-fragments. We use a
commercial front-end, the EDG C++ front-end [3]. Instead, we extend a source-
fragment automatically to a complete program which can be parsed by the front-
end and extract the corresponding IR-fragment from the generated IR. These two
translation processes are accomplished by the Fragment Concatenator and Fragment
Extractor.
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Figure 1: Source-To-Source architecture with bended front-end and back-end

The relationship between the Fragment Concatenator and Fragment Extractor
is that the Fragment Extractor strips off all IR code that represents source code
that needed to be added by the Fragment Concatenator to complete a given source-
fragment to a program that can be parsed by the front-end. The source-prefix and
source-postfix that are needed to extend a source-fragment are computed by the
system. The user only needs to provide the source-fragment.

Synthesized attributes and (restricted) inherited attributes can be used to define
a transformation. The traversal order is fixed, which we therefore call an evaluation
scheme for attributes. An attribute can be of arbitrary type because we provide
generic interfaces for the attribute evaluation.

Intermediate Representation

The intermediate representation we use is an annotated abstract syntax tree (AST),
which is an imploded Parse Tree annotated with all static type information for each
expression, symbol tables for every scope, and cross-references to definitions from
declarations where useful.

Usually, an object-oriented abstract syntax tree represents lists of language el-
ements as a collection of objects, and single language elements as single objects.
This holds for our design for all nodes.

Another important aspect which also influenced the design of the AST is the ease
of access of computed attributes. Since the evaluation order is fixed the computation
of attributes is fixed as well and the access of an attribute access can be done by



name. To make the access as simplicistic as possible we developed an AST design
that allows to use a straight-forward naming scheme based only on the node type
(name) and the names of pointers to the successor nodes of an AST node. Note
that an inherited and synthesized attribute can be of arbitrary type.

Therefore we have redesigned the SAGE II representation [4] to conform to the
following properties, now called SAGE III:

We have two different kinds of nodes with respect to the successor information
of the AST:

e Container nodes: A node only has a single container of pointers to successor
node objects.

e Non-Container nodes: A node only has several single pointers to successor
node objects.

We changed the interfaces of 47 node types and added 5 new node types of the
SAGE II representation. With these constraints on all nodes also the visualization
of the AST was simplified, thus making it easier to communicate the structure and
transformations on it to the user.

Attribute Evaluation

Perhaps the most straightforward style of computing a value over a tree is by struc-
tural induction. The result of a tree is computed as a function of the results of its
subtrees.

Structural induction is a special case of attribute grammars, where there is only
one pass, computing only synthesized attributes. Each node is decorated with a
number of attributes, of which the value is computed from the values of the sub-
terms of the node (synthesized attributes) or from the encompassing node (inherited
attributes). An evaluation scheme walks the tree to compute all the attributes.

We provide four different generic interfaces: a “classic” traversal of the AST
without attribute evaluation, and a top-down, bottom-up, and a combined top-
down-bottom-up evaluation scheme with inherited attributes for top-down and syn-
thesized attributes for bottom-up evaluation. Additionally we allow to attach user-
defined attributes to any AST node (AST attributes). These AST attributes can
be used to share information between different transformantions and allow to build
object-oriented hierarchies of transformations and build abstractions and nested
evaluations for any part of a transformation.

Fragment Concatenator and Extractor

The Fragment Concatenator concatenates prefix, fragment, and postfix and wrapps
code around it to generate a program that can be parsed by the front-end. The
Fragment Extractor unwrappes code, and strips off prefix and postix, to obtain an
AST fragment which represents the source fragment.

A source-string is called a source-fragment if all of the following holds

e The fragment can be represented by an AST subtree with a single root node.
e All arguments of (unary, binary, and ternary) operators are present.
e New declarations must be complete.

A fragment can always be completed by an automatically generated prefix, post-
fix, and wrapper code to form a program that can be parsed by the front-end.



MySynthesizedAttribute
evaluateSynthesizedAttribute0fSgWhileStatement (SgNode* node,
MyInheritedAttribute ia,
SubTreeSynthesizedAttributes c) {
return c[SgWhileStmt_condition] + c[SgWhileStmt_body];
}

MySynthesizedAttribute
evaluateSynthesizedAttribute0fSgBasicBlock(SgNode* node,
MyInheritedAttribute ia,
SubTreeSynthesizedAttributes c) {
MySynthesizedAttribute s;
if (ia.useThisBlock) {
for(SubTreeSynthesizedAttributes: :iterator i=c.begin(); i'!=c.end(); i++) {
s += *i;
}
}
node->setAttribute ("mynewattribute",new MyAstAttribute(s)); // add AST attribute
}

Figure 2: Example of C++ user-code to define the evaluation of synthesized at-
tributes for SgWhileStatement and SgBasicBlock
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Figure 3: A source-fragment can always be translated into an AST fragment by
reinvoking the front-end and any AST fragment can always be translated into a
source-fragment by reinvoking the back-end

The source-prefix is defined by the sequence of declarations and opening scopes
from the first language construct in the program to the start of the source-fragment.
The postfix is defined by the closing scopes that are required to complete it to obtain
a correct program. Note that not every source-string is a source-fragment but that
the set of all source-fragments is a strict subset of all source-strings.

Because a source-fragment can always be completed and parsed by the front-end
we can always obtain the corresponding AST fragment for a given source-fragment.

For unparsing an AST fragment only the first of the three conditions must hold,
i.e. unparsing can be started for any node of the AST.

Note that a source-prefix is not represented by subtree in general but a source-
prefix, which is a fragment, can always be represented by an AST fragment which
is generated when reinvoking the front-end.

Since both representations, source-fragments and AST fragments can always
be translated to the one or other, both can be used interchangably allowing the
user to use source-strings where it is convenient to define new code fragments by
using source code patterns or traversing an AST subtree to compute attributes.
Attributes can be of any type, including source-strings.



Fragment Substitution

An AST fragment which is obtained from the Fragement Extractor corresponds
to the source-fragment which is the input to the Fragement Concatenator. The
location in the AST where this new AST fragment needs to be inserted is defined
by the root node of the AST subtree to be replaced. This root node can be defined
relativ to a current location in a traversal on the AST or absolute as a direct pointer
to the node.

A relative position of the substitution root node can only be specified for loca-
tions which are on the path of the bottom-up-traversal from the current node to the
AST root node. But the pointer to such a node is not required, instead different
cases such as outer scope, file scope can be defined and are provided by our infras-
tructure. This simplifies moving code betweeen scopes/blocks as necessary for loop
hoisting, loop fusion, etc.

The use of relative positions when generating lower-level code has been most
useful in the source-to-source translators we have implemented so far. This is an
example where attributed grammers are more difficult to use because an attribute
would be required to propagate this information and the location where this code
needs to be used would have to be associated with a rule. For example, when
we want to move code, we can specify the target by means of outer loop scope,
(current) function scope, current or other file scope, etc., from the current position.
This functionality is implemented internally by using the attribute mechanism but
hidden from the user, and by ensuring an order of modifications on the AST as
discussed in the next section.

Program Transformations

The intermediate representation is rewritten by a transformation. The underlying
system ensures that if only strings are used to specify replacements, all internal
data structures are updated. The user does not need to modify any pointers of the
AST.

A transformation is the behaviour of an object where at most two virtual func-
tions need to be implemented, one for evaluating inherited attributes, and one for
evaluating synthesized attributes.

That the AST is rewritten is not (visible as) a side-effect of the evaluate functions
which the user implements. A transformation is started when the traverse function
on a transformation object is invoked but the AST does not get modified before
the traversal on the respective subtree is finished. Clearly, any modification of
AST is performed after the traversal on a respective subtree has completed. The
function calls to move/copy/insert/replace fragments of the AST are buffered and
no modification takes place before all user-defined functions (at most two) on a node
have returned control to the system. This is accomblished by storing the relative
position where the user specified to insert a source-fragment and by buffering the
source-fragments, until the node where the insert operation actually needs to take
place is reached.

In general, any source-fragment based rewrite of the AST ensures that the se-
mantics of a single transformation are that no side effect on the AST becomes visible
before the transformation is finished, i.e. like a side-effect free function with respect
to the AST. However, side-effects like writing to stdout, can take place because it
is ordinary C++ code but as long as only attributes and source-fragments are used
to define transformations the user is on the safe side.

For a sequence of transformations this is not the case. This allows to combine
different specialized transformations, and to apply transformations iteratively. To



some extent rewrite systems, by using pattern matching (AST read-only traver-
sals, or AST “queries”), can be implemented but our system is less efficient than
comparable rewrite systems for similar tasks.

Debugging and visualization

We allow to dump out any subtree of the intermediate representation in two formats.
A visualization of the AST is generated by using the tool dot. We dump out a tex-
tual description of the AST and dot translates this description into a visualization,
allowing to specify a whole bunch of different formats like postscript, gif, or jpeg.
Although this helps the user to understand the IR and see the actual shapes in the
AST to which a lanague construct is mapped to it is of limited use if different parts
of the tree need to be imploded and exploded to compare operations on programs
with more than 500 lines of code. As an alternative visualization we use a PDF file,
specifically, the PDF bookmark structure to represent the AST structure. For each
node a bookmark and a single page showing all information that was generated at
this node during an attribute evaluation.

Note that outputs can be generated at any point of a transformation. If a trans-
formation is composed from several transformations, using higher-level abstractions
to refine the transformations itself, an output after each step of a transformation
can be generated and compared when debugging the code.

For both, PDF and DOT output, the output can be customized by the user by
overriding a virtual function that is called during the generation at each node and
allows to add user-defined information.

Finally, the generated source code itself can also be used for debugging because
we preserve the original source structure beyond the C++ level. Preprocessor di-
rectives can be unparsed as well, allowing the user to see a source code that is not
extended by hundreds of pages of declarations from #include directives. Although
this detail has not got much attention by the community so far, it does help in the
process of debugging.

Related Work

Within ROSE we use Sage III, which we have developed as a revision of the Sage
IT [4] AST restructuring tool. Work on OpenC++ [5] has led to the development
of a C++ tool which is also similar to Sage, but adds some additional capabilities
for optimization. It neither addresses the sophisticated scale of abstractions that
we target nor the transformations we target.

Related work on the optimization of libraries on telescoping languages [6] shares
many of the same goals as our research work and we expect to work more closely
with these researchers in the near future. Our approach so far is less ambitious than
the telescoping languages research, but is in some aspects further along, though cur-
rently specific to high-level abstractions represented in C++. Further approaches
are based on the definition of library-specific annotation languages to guide opti-
mizing source code transformations [7] and on the specification of both high-level
languages and corresponding sets of axioms defining code optimizations, see [8] for
example.

Work at University of Tennessee has lead to the development of Automatically
Tuned Linear Algebra Software (ATLAS) [9], within this approach numerous ver-
sions of a parameterized transformation are generated to define a search space and
the performance of a given architecture is evaluated. The parameters associated
with the best performing transformation are thus identified empirically. Prepro-
cessors built using the ROSE framework could take significant advantage of this



int main ()

{

int s=10;
while (s>0) {
s=-;

}

return s;
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Figure 4: A visualization of the AST. Such visualization can be generated for any
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approach to identify the optimal parameters associated with transformations pa-
rameterized on architecture specific details (e.g. cache-size).

The example shown is similar to what can be done using expression templates
techniques [10]. Expression templates work by using the template mechanism de-
fined by C++ and requires no additional preprocessing step, but is exceedingly
problematic. The general compile-time approach we present is superior, or at worst
an alternative, because it provides for sophisticated program analysis which our sim-
ple example does not require, but more complex transformations (e.g. loop fusion)
most certainly require. Such program analysis (e.g. dependence analysis) is not
possible within the expression template technique because of the limitations inher-
ent in template meta-programming. More information about expression templates
and its advantages, disadvantages, and limitations can be found in [10-12].

Conclusions

We have presented a source-to-source architecture and its implementation for C++-.
The architecture allows to reinvoke the front-end to translate a source-fragment to
an IR-fragment. This is possible because the source-fragmented is automatically
extended by the Fragment Concatenator to form a complete program that can
parsed by the front-end. The Fragment Extractor extracts an IR-fragment that
corresponds to the source-fragment. Eventually this IR-fragment is inserted into
the IR where specified. Invoking the back-end allows to generate a source-string for
any IR-fragment. Both can be combined whereever the one or the other simplifies
the definition of a transformation.

The attribute evaluation scheme in combination with reinvoking front-end and
back-end allows to define a transformation as a side-effect free operation on the
AST in C++. A transformation is the behaviour of an object and transformation
hierarchies can be built by inheritance. Transformations can be applied in sequence
and computed values for each AST node can be combined by using AST attributes
which can be attached to any AST node.

Transformations are defined in C++, the same language in which the code is
written which the user desires to optimize. The AST can be visualized as a tree
in different formats like postscript, gif, or jpeg. And it can be viewed as PDF file,
representing the tree structure in the PDF bookmark mechanism and all information
about attributes and internal data (optional) for each node on a separate page.

The architecture allows users to define optimizations which the vendor compiler
they are using does not perform for the abstractions they have built. Because such
transformations are defined as source-to-source transformations they are best suited
for high-level optimizations and the vendor compiler can still be used for low-level
optimizations for specific architectures.
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